

RELAZIONE di LABORATORIO DI CHIMICA/FISICA

Gruppo: Abdelrazik, De Luna, Meucci, Classe 1C ling.

Ocri, Rosina, Zanzi Data: 9 febbraio 2009

TITOLO: Riconoscimento di un liquido incognito

SCOPO: Riconoscere il liquido A.

Come strategia risolutiva del problem solving scegliamo di identificare il liquido in base alla sua densità, trattandosi di una sostanza pura.

MATERIALE OCCORRENTE:

Sostanze:

liquido incognito A, trasparente

Strumenti:

liq.	d (8/me)
etere	0,7
alcol etilico	0,8
olio doliva	0, 9
H ₂ O distillata	1
HO+ NACE	1,1-1,2
glicerina	1,3

- cilindro graduato (sensibilità: 1ml; portata: 100 ml)
- bilancia tecnica (sensibilità: 0,01g; portata: 800g)
- matraccio
- tabella delle densità

LIQUIDO	DENSITÀ
	(g/ml)
Etere	0,7
Alcol etilico	0,8
Olio d'oliva	0,9
Acqua distillata	1,0
Soluzione salina (Acqua + NaCl)	1,1-1,2
glicerina	1,3

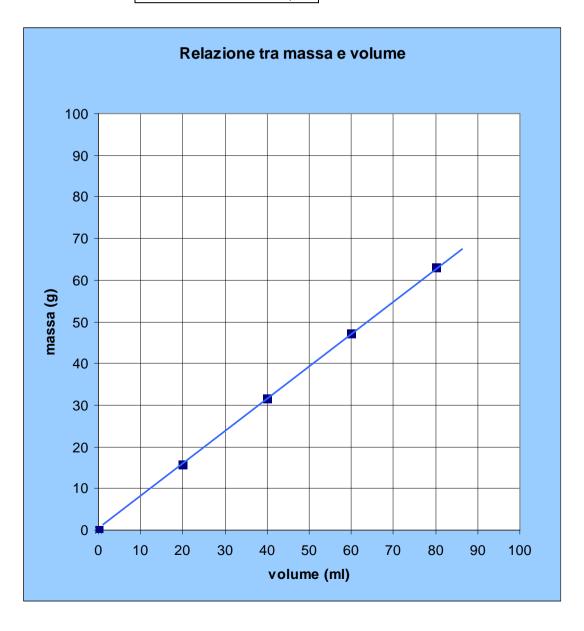
DESCRIZIONE:

Pesiamo il cilindro vuoto per trovare la tara.

Versiamo nel cilindro un volume noto di liquido e ne misuriamo la massa lorda, mediante la bilancia.

Ripetiamo la misurazione di volume e massa per quattro o cinque quantitativi diversi di liquido.

Sottraendo la tara alle masse lorde calcoliamo le masse nette.


Calcoliamo la densità facendo la media dei rapporti tra massa e volume.

DATI:

Tara(g)	MASSA LORDA(g)	MASSA NETTA(g)	VOLUME(ml)
111,3	127,10	15,92	20
	142,91	31,71	40
	158,40	47,27	60
	174,31	63,18	80

Volume(ml)	Massa(g)	K = M/V
0	0	
20	15,92	0,80
40	31,71	0,79
60	47,27	0,79
80	63,18	0,79

K media = 0.79

Caratteristica matematica:
$$\frac{m}{v} = k$$

è una proporzionalità diretta

Legge generale:
$$\mathbf{m} = \mathbf{k}^* \mathbf{v}$$

Calcolo della costante:
$$k = \frac{15.92}{20} = 0.80$$

$$k = \frac{31.71}{40} = 0.79$$

$$k = \frac{47.27}{60} = 0.79$$

$$k = \frac{63.18}{80} = 0.79$$

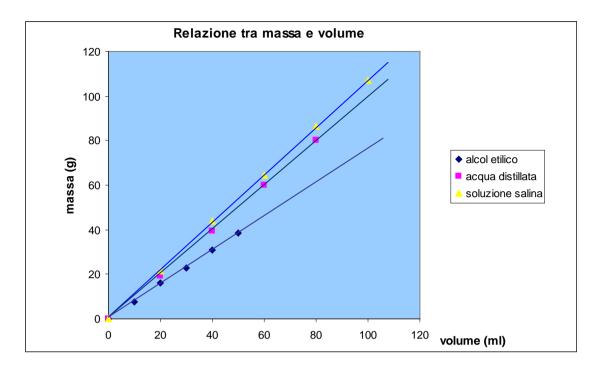
k media =
$$\frac{0.8 + 0.79 + 0.79 + 0.79}{4} = 0.79 \approx 0.80$$

Legge fisica particolare: m = 0.80 * v

CONCLUSIONE:

Il liquido incognito A è alcol etilico, perché abbiamo trovato una densità media di circa 0,8 g/ml, che corrisponde alla densità dell'alcol etilico.

OSSERVAZIONI:


Confrontiamo i risultati ottenuti dai diversi gruppi, che avevano liquidi incogniti differenti:

liquido A = alcol etilico

liquido B = acqua distillata

liquido C = soluzione salina

Grafico di confronto tra i diversi liquidi

Riportando nello stesso grafico le rette relative ai 3 differenti liquidi, osserviamo che ciò che differenzia le rette è la loro pendenza: infatti la pendenza (in matematica il coefficiente angolare) corrisponde alla K, ed il significato fisico della K è la DENSITA' del liquido.

Pertanto il liquido più denso è quello corrispondente alla retta più inclinata.